
A Survey of Common Stemming Techniques and
Existing Stemmers for Indian Languages

Vishal Gupta

UIET, Panjab University, Chandigarh, India
Email: vishal@pu.ac.in

Gurpreet Singh Lehal

Department of Computer Science, Punjabi University, Patiala, India
Email: gslehal@gmail.com

Abstract—Stemming is an operation that relates

morphological variants of a word. The purpose of stemming

is to obtain the stem or radix of those words which are not

found in dictionary. If stemmed word is present in

dictionary, then that is a genuine word, otherwise it may be

proper name or some invalid word. Stemming is the process

for reducing inflected or sometimes derived words to their

stem, base or root form, generally a written word form. The

stem need not be identical to the morphological root of the

word, it is usually sufficient that related words map to the

same stem, even if this stem is not in itself a valid root.

Stemming is used in Information Retrieval systems to

improve performance. The design of stemmers is language

specific, and requires some to significant linguistic expertise

in the language, as well as the understanding of the needs

for a spelling checker for that language. A stemmer’s

performance and effectiveness in applications such as

spelling checker vary across languages. A typical simple

stemmer algorithm involves removing suffixes using a list of

frequent suffixes, while a more complex one would use

morphological knowledge to derive a stem from the words.

In this paper a survey of common stemming techniques and

existing stemmers for Indian languages have been

presented.

Index Terms—stemmer, stemming techniques, Indian

stemmers, suffix removal

I. INTRODUCTION

 Stemming is an operation that relates morphological
variants of a word. The term ‘conflation’ is used to
denote the act of mapping variants of a word to a single
term or ‘stem’. Stemming is used in Information
Retrieval systems to improve performance. For example,
when a user enters the query word stemming, he most
likely wants to retrieve documents containing the terms
stemmer and stemmed as well. Thus, using a stemmer
improves recall, i.e., the number of documents retrieved
in response to a query. Also, since many terms are
mapped to one, stemming serves to decrease the size of
the index files in the IR system.

 The purpose of stemming is to obtain the stem or radix
of those words which are not found in dictionary. If
stemmed word is present in dictionary, then that is a
genuine word, otherwise it may be proper name or some
invalid word. stemming is the process for reducing
inflected or sometimes derived words to their stem, base
or root form, generally a written word form. The stem
need not be identical to the morphological root of the
word, it is usually sufficient that related words map to the
same stem, even if this stem is not in itself a valid root. A
stemmer for English, for example, should identify the
string cats and possibly catlike, catty etc. as based on the
root cat, and stemmer, stemming, stemmed as based on
stem. A stemming algorithm reduces the words fishing,
fished, fish, and fisher to the root word, fish. Stemming is
an operation that conflates morphologically similar terms
into a single term without doing complete morphological
analysis.

 Stemming [1] is used in information retrieval systems
to improve performance. Additionally, this operation
reduces the number of terms in the information retrieval
system, thus decreasing the size of the index files. The
design of stemmers is language specific, and requires
some to significant linguistic expertise in the language, as
well as the understanding of the needs for a spelling
checker for that language. A stemmer’s performance and

effectiveness in applications such as spelling checker
vary across languages. A typical simple stemmer
algorithm involves removing suffixes using a list of
frequent suffixes, while a more complex one would use
morphological knowledge to derive a stem from the
words. Not much work has been reported for stemming
for Indian languages compared to English and other
European languages.

A. Common Stemming Techniques

 Porter (1980) proposed an algorithm for suffix
stripping, is perhaps the most widely used algorithm for
English stemming. Removing suffixes by automatic
means is an operation which is especially useful in the
field of information retrieval. It is rule based and is best

JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 5, NO. 2, MAY 2013 157

© 2013 ACADEMY PUBLISHER
doi:10.4304/jetwi.5.2.157-161

http://en.wikipedia.org/wiki/Word_stem
http://en.wikipedia.org/wiki/Root_(linguistics)
http://en.wikipedia.org/wiki/Morphological_root
http://en.wikipedia.org/wiki/Word_stem
http://en.wikipedia.org/wiki/Root_(linguistics)
http://en.wikipedia.org/wiki/Morphological_root
http://en.wikipedia.org/wiki/English_language
http://en.wikipedia.org/wiki/String_literal

suited for less inflectional languages like English. The
suffix stripping process reduces the total number of terms
in the IR system, and hence reduces the size and
complexity of the data in the system, which is always
advantageous. The algorithm does not remove a suffix
when the stem is too short. The length of the stem is
given by its measure, m. There is no linguistic basis for
this approach. The resulting vocabulary of stems
contained 6370 distinct entries. Usually the suffix
stripping process reduces the size of the vocabulary by
about one third. [2]

 Paice (1994) proposed an evaluation method for
stemming algorithms. This method outlines an approach
to stemmer evaluation which is based on detecting and
counting the actual under and over stemming errors
committed during stemming of word samples derived
from actual texts. This permits the computation of a
‘stemming weight’ index for each stemmer, as well as
indices representing the under and over stemming error
rates and the general accuracy. The method involves
manually dividing a sample of words into conceptual
groups, and referring the actual stemming performance to
these groups. Though not used for stemming in real
systems, the algorithm provides a good baseline for other
stemming algorithms evaluation. [3]

 Jenkins and Smith (2005) proposed conservative
stemming for search and indexing This stemmer is
designed to stem conservatively to orthographically
correct word forms and recognizing words which do not
need to be stemmed, such as proper nouns. Similarly to
other stemmers, it operates on a set of rules which are
used as steps. There are two groups of rules: the first
group is to clean the tokens, and the second to alter
suffixes. The first group of rules first avoids a small list
of six frequent problem words. Second, possessive
apostrophes are removed and contractions are expanded.
All hyphens are removed and tokens containing digits are
left untouched. Strings which are all upper case and digits
are left untouched unless there is a lower case terminal ‘s’

(i.e. transforming plural forms of acronyms to singular
forms). Proper nouns should not usually be stemmed,
except to remove possessives. If the text is untagged the
stemmer uses the simple heuristic that any capitalized
token not preceded by sentence breaking punctuation is a
proper noun. The second group of rules contains 139
suffix rules, each testing for a specific type of suffix. The
rules are set in a particular order so that the longest suffix
applicable is used rather a shorter one which could lead to
nonsense words and more words not stemmed entirely to
their root form. [4]

 Paice (1990) proposed another stemmer which is an
iterative algorithm with one table containing about 120
rules indexed by the last letter of a suffix. On each
iteration, it tries to find an applicable rule by the last
character of the word. If there is no such rule, it
terminates. It also terminates if a word starts with a vowel
and there are only two letters left or if a word starts with a

consonant and there are only three characters left.
Otherwise, the rule is applied and the process repeats. [5]

 John (1974) proposed suffix removal and word
conflation which follows the longest match process and
has perhaps the most comprehensive list of English
suffixes (along with transformation rules) – about 1200
entries. The suffixes are stored in the reversed order
indexed by their length and last letter. The rules define if
a suffix found can be removed (for example, if the
remaining part of the word is not shorter than N symbols;
or if the suffix is preceded by a particular sequence of
characters). It seems that the algorithm didn’t gain

popularity due to its complexity and lack of a standard
reusable implementation. [6]

 Mayfield and McNamee (2003) proposed single N-
gram stemming which demonstrates that selection of a
single n-gram as a pseudo-stem for a word can be an
effective and efficient language-neutral approach for
some languages The idea is to analyze distribution of all
N-grams in a document (with some rather high value for
N like 4 or 5, selected empirically). Since morphological
invariants (unique word roots) will occur less frequently
than variate parts (common prefixes and suffixes, for
example, "ing" or "able"), a typical statistics like inverse
document frequency (IDF) can be used to identify them.
[7]

 Massimo and Nicola (2003) proposed a novel
statistical method for stemmer generation based on
hidden Markov models. It doesn't need a prior linguistic
knowledge or a manually created training set. Instead it
uses unsupervised training which can be performed at
indexing time. HMMs are finite-state automata with
transitions defined by probability functions. Since
probability of each path can be computed, it is possible to
find the most probable path in the automata graph. Each
character comprising a word is considered as a state. The
authors divided all possible states into two groups (roots
and suffixes) and two categories: initial (which can be
roots only) and final (roots or suffixes). Transitions
between states define word building process. For any
given word, the most probable path from initial to final
states will produce the split point (a transition from roots
to suffixes). Then the sequence of characters before this
point can be considered as a stem. The authors considered
three different topologies of HMM in their experiments.
Using Porter's algorithm as a baseline, they found that
HMM had a tendency to over stem the words. [8]

 Xu and Croft (1998) proposed an approach, which
allows correcting "rude" stemming results based on the
statistical properties of a corpus used. The basic idea is to
generate equivalence classes for words with a classical
stemmer and then "separate back" some conflated words
based on their co-occurrence in the corpora. It also helps
preventing well-known incorrect conflations of Porter's
algorithm, such as "policy/police" since chances of these
two words co-occurrence are rather low. Using Porter's

158 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 5, NO. 2, MAY 2013

© 2013 ACADEMY PUBLISHER

and trigram matching algorithms on three English corpora
and one Spanish corpus, the authors showed significant
improvement in retrieval efficiency (though it should be
noted that separating conflated entries back almost
canceled the results of stemming). [9]

 Peng et al. (2007) suggested context sensitive
stemming for web search [68]. In their work corpus
analysis is used to find word distributional similarity.
Then a few morphological rules from Porter's stemmer
are applied to the similarity list to find stemming
candidates, some of which are finally selected based on
the handling purpose, for example, pluralization.
Obtained forms are used to expand a search query on
non-transformed index. For example, considering word
"develop", Applying stemming rules retains "developing,
developed, develops, development, development" and for
Pluralization purposes only "develops" is selected.
Hence, the user's query "develop" is expanded to
"develop OR develops". [10]

 Goldsmith (2001) proposed an algorithm for the
morphology of a language based on the minimum
description length (MDL) framework which focuses on
representing the data in as compact manner as possible.
This study reports the results of using minimum
description length (MDL) analysis to model unsupervised
learning of the morphological segmentation of European
languages, using corpora ranging in size from 5,000
words to 500,000 words. A set of heuristics are proposed
that rapidly develop a probabilistic morphological
grammar, and use MDL as primary tool to determine
whether the modifications proposed by the heuristics will
be adopted or not. The resulting grammar matches well
the analysis that would be developed by a human
morphologist. [11]

 Creutz and lagus (2005) used probabilistic maximum a
posteriori (MAP) formulation for morpheme
segmentation and described the first public version of the
Morfessor software, which is a program that takes as
input a corpus of unannotated text and produces a
segmentation of the word forms observed in the text. The
segmentation obtained often resembles a linguistic
morpheme segmentation. Morfessor is not language-
dependent. The number of segments per word is not
restricted to two or three as in some other existing
morphology learning models. [12]

B. Existing Stemmers for Indian Languages

 Not much work has been reported for stemming for
Indian languages compared to English and other
European languages. Ramanathan and Rao (2003)
proposed a lightweight stemmer for Hindi which has used
a hand crafted suffix list and has performed longest match
stripping. Light stemming refers to stripping of a small
set of either prefixes or suffixes or both, without trying to
deal with infixes, or recognize patterns and find roots.
This lightweight stemmer proposed for Hindi is based on
the grammar for Hindi language in which a list of total 65

suffixes is generated manually. Terms are conflated by
stripping off word endings from a suffix list on a `longest
match' basis. Noun, adjective and verb infections have
been discussed and based on that 65 unique suffixes are
collected. The major advantage of this approach is as it is
computationally inexpensive. Documents were chosen
from varied domains such as Films, Health, Business,
Sports and Politics. The collection contained 35977
unique words. Under stemming and over stemming errors
calculated in this methodology were 4.68% and 13.84%
respectively. No recall/precision-based evaluation of the
work has been reported; thus the effectiveness of this
stemming procedure is difficult to estimate. [13]

 Islam et al. (2007) proposed a light weight stemmer for
Bengali and its use in spelling checker with similar
approach as proposed by Ramanathan and Rao (2003)
[13]. The proposed algorithm strips the suffixes using a
predetermined suffix list, also on a `longest match' basis.
A total of 72 suffixes for verbs, 22 for nouns and just 8
for adjectives for Bengali language have been found. The
proposed stemming algorithm is primarily for handling
inflections – it does not handle derivational suffixes, for
which one would need a proper morphological analyzer.
Reducing derivationally related terms to the same stem
would lead to overconflation in some cases, potentially
affecting the precision of information retrieval
applications, other than spelling checkers. [14]

 Majumder et al. (2007) developed statistical approach
YASS: Yet Another Suffix Stripper, which uses a
clustering based approach based on string distance
measures and requires no linguistic knowledge. They
concluded that stemming improves recall of IR systems
for Indian languages like Bengali. YASS is based on
string distance measure which is used to cluster a lexicon
created from a text corpus into homogenous groups. Each
group is expected to represent an equivalence class
consisting of morphological variants of the single root
word. Graph-theoretic clustering algorithm which require
a threshold Ө which was used as a parameter in the
experiments. [15]

 Dasgupta and Ng (2006) proposed unsupervised
morphological parsing of Bengali. Unsupervised
morphological analysis is the task of segmenting words
into prefixes, suffixes and stems without prior knowledge
of language-specific morphotactics and morpho-
phonological rules. This parser is composed of two steps:
(1) inducing prefixes, suffixes and roots from a
vocabulary consisting of words taken from a large,
unannotated corpus, and (2) segmenting a word based on
these induced morphemes. When evaluated on a set of
4,110 human-segmented Bengali words, our algorithm
achieves an F-score of 83%, substantially outperforming
Linguistica, one of the most widely-used unsupervised
morphological parsers, by about 23%. [16]

 Pandey and Siddiqui (2008) [17] proposed an
unsupervised stemming algorithm for Hindi based on

JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 5, NO. 2, MAY 2013 159

© 2013 ACADEMY PUBLISHER

Goldsmith (2001) [69] approach. It is based on split-all
method. For unsupervised learning (training), words from
Hindi documents from EMILLE corpus have been
extracted. These words have been split to give n-gram
(n=1, 2, 3 … l) suffix, where l is length of the word. Then
suffix and stem probabilities are computed. These
probabilities are multiplied to give split probability. The
optimal segment corresponds to maximum split
probability. Some post-processing steps have been taken
to refine the learned suffixes. It is evaluated on 1000-
1000 words randomly extracted words (only) from Hindi
WordNet1 data base. The training data has been
constructed by extracting 106403 words extracted from
EMILLE2 corpus. The observed accuracy is 89.9% after
applying some heuristic measures. The F-score is
94.96%. The algorithm does not require any language
specific information. [17]

 Majgaonker and Siddiqui (2010) developed an
unsupervised approach for Marathi stemmer. Three
different approaches (rule based, suffix stripping and
statistical stripping) for suffix rules generation has been
used in unsupervised stemmer. The rule-based stemmer
uses a set of manually extracted suffix stripping rules
whereas the unsupervised approach learns suffixes
automatically from a set of words extracted from raw
Marathi text. The performance of both the stemmers has
been compared on a test dataset consisting of 1500
manually stemmed word. The maximum accuracy
observed is 82.5% for the statistical suffix stripping
approach. This approach uses a set of words to learn
suffixes. [18]

 Suba et al. (2011) proposed two stemmers for Gujarati-
a lightweight inflectional stemmer based on a hybrid
approach and a heavyweight derivational stemmer based
on a rule-based approach. The inflectional stemmer has
an average accuracy of about 90.7% which is
considerable as far as IR is concerned. Boost in accuracy
due to POS based stemming was 9.6% and due to
inclusion of the language characteristics it was further
boosted by 12.7%. The derivational stemmer has an
average accuracy of 70.7% which can act as a good
baseline and can be useful in tasks such as dictionary
search or data compression. The limitations of
inflectional stemmer can be easily overcome if modules
like Named Entity Recognizer are integrated with the
system. [19]
 Regarding Punjabi language, A stemmer for Punjabi
nouns and proper names had been developed by Gupta
and Lehal (2011) in which an attempt was made to obtain
stem or radix of a Punjabi word and then stem or radix
was checked against Punjabi noun morph and proper
names list. From Punjabi news corpus various possible
noun suffixes were identified like ੀ ਆਂ īāṃ, ਿੀਆਂ iāṃ,

ੀ ਆਂ ūāṃ, ੀ ੀਂ āṃ, ੀ ਏ īē etc. and various stemming rules
for nouns and proper names were generated. The
efficiency of Punjabi language noun and Proper name
stemmer is 87.37%, which is tested over 50 news

documents of Punjabi news corpus containing 11.29
million words.

REFERENCES

[1] H. Harmani, Walid Keirouz and Saeed Raheel, “A rule

base extensible stemmer for Information retrieval with
application to Arabic”, The International Arab Journal of

Information Technology, Vol. No.3, Issue No.3, pp 265-
272, 2006.

[2] M. Porter, “An Algorithm for Suffix Stripping Program”,

14(3): 130-137, 1980.
[3] C. D. Paice, “An Evaluation Method for Stemming

Algorithms”, Proceedings of 17th annual international

ACM SIGIR conference on Research and development in

information retrieval, 42-50, 1994.
[4] M. Jenkins and D. Smith, “Conservative Stemming for

Search and Indexing”, In Proceedings of SIGIR’05, 2005.
[5] C. D. Paice, “Another stemmer”. ACM SIGIR Forum,

Volume 24, No. 3, 56-61, 1990.
[6] D. John, “Suffix removal and word conflation”, ALLC

Bulletin, Volume 2, No. 3, 33-46, 1974.
[7] J. Mayfield and P. McNamee, “Single N-gram stemming”,

Proceedings of the 26th annual international ACM SIGIR

Conference on Research and Development in Information

Retrieval, 415-416, 2003.
[8] M. Massimo and O. Nicola. “A Novel Method for

Stemmer Generation based on Hidden Markov Models”,
Proceedings of the twelfth international conference on

Information and knowledge management, 131-138, 2003.
[9] X. Jinxi and C. Bruce W., “Corpus-based Stemming Using

Co-occurrence of Word Variants”, ACM Transactions on

Information Systems, Volume 16, Issue 1, 61-81, 1998.
[10] F. Peng, N. Ahmed, X. Li and Y. Lu, “Context Sensitive

Stemming for Web Search”, Proceedings of the 30th

annual international ACM SIGIR Conference on Research

and Development in Information Retrieval, 639-646, 2007.
[11] J. A. Goldsmith, “Unsupervised Learning of the

Morphology of a Natural Language”, Computational

Linguistics, MIT Press, 27(2):153-198, 2001.
[12] M. Creutz and K. Lagus, “Unsupervised Morpheme

Segmentation and Morphology Induction from Text
Corpora using Morfessor 1.0.”, Technical Report A81,
Publications in Computer and Information Science,
Helsinki University of Technology, 2005.

[13] A. Ramanathan and D. D. Rao, “A Lightweight Stemmer
for Hindi”, Workshop on Computational Linguistics for

South-Asian Languages, EACL, 2003.
[14] M. Z. Islam, M. N. Uddin and M. Khan, “A Light Weight

Stemmer for Bengali and its Use in Spelling Checker”.
Proc. 1st Intl. Conf. on Digital Comm. and Computer

Applications (DCCA07), Irbid, Jordan, March 19-23 2007.
[15] P. Majumder, M. Mitra, S. K. Parui, G. Kole, P. Mitra, and

K. Datta, “YASS: Yet Another Suffix Stripper”,
Association for Computing Machinery Transactions on

Information Systems, 25(4):18-38, 2007.
[16] S. Dasgupta and V. Ng, “Unsupervised Morphological

Parsing of Bengali”, Language Resources and Evaluation,
40(3-4):311-330, 2006.

[17] A. K. Pandey and T. J. Siddiqui, “An Unsupervised Hindi
Stemmer with Heuristic Improvements”, In Proceedings of

the Second Workshop on Analytics For Noisy Unstructured

Text Data, 303:99-105, 2008.
[18] M. M. Majgaonker and T. J Siddiqui, “Discovering

Suffixes: A Case Study for Marathi Language”,

160 JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 5, NO. 2, MAY 2013

© 2013 ACADEMY PUBLISHER

International Journal on Computer Science and

Engineering, Vol. 02, No. 08, pp. 2716-2720, 2010.
[19] K. Suba, D. Jiandani and P. Bhattacharyya, “Hybrid

Inflectional Stemmer and Rule-based Derivational
Stemmer for Gujarati”, In proceedings of the 2nd

Workshop on South and Southeast Asian Natural

Language Processing (WSSANLP), IJCNLP 2011, Chiang
Mai, Thailand, pp.1-8, 2011.

[20] V. Gupta and G. S. Lehal, “Punjabi Language Stemmer for
Nouns and Proper Names”, Proceedings of the 2nd

Workshop on South and Southeast Asian Natural

Language Processing (WSSANLP), IJCNLP 2011, Chiang
Mai, Thailand, pp. 35–39, 2011.

[21] V. Gupta and G. S. Lehal, “Preprocessing Phase of Punjabi
Language Text Summarization”, International Conference

on Information Systems for Indian Languages

Communications in Computer and Information Science

ICISIL2011, Volume 139, Part 2, Springer-Verlag Berlin
Heidelberg, pp. 250-253, 2011.

AUTHORS’ INFORMATION

Vishal Gupta is Assistant Professor in
Computer Science & Engineering
department at University Institute of
Engineering & Technology, Panjab
University Chandigarh. He has done
MTech. in computer science &
engineering from Punjabi University
Patiala in 2005. He is among University
toppers. He secured 82% Marks in
MTech. Vishal did his BTech. in CSE

from Govt. Engineering College Ferozepur in 2003. He is also
pursuing his PhD in Computer Science & Engineering. Vishal
has written around thirty five research papers in international
and national journals and conferences. He has developed a
number of research projects in field of NLP including synonyms
detection, automatic question answering and text summarization
etc. One of his research paper on Punjabi language text
processing was awarded as best research paper by Dr. V. Raja
Raman at an International Conference at Panipat. He is also a
merit holder in 10th and 12th classes of Punjab School education
board.

Professor Gurpreet Singh Lehal received
undergraduate degree in Mathematics in
1988 from Panjab University,
Chandigarh, India, and Post Graduate
degree in Computer Science in 1995 from
Thapar Institute of Engineering &
Technology, Patiala, India and Ph. D.
degree in Computer Science from Punjabi

University, Patiala, in 2002. He joined Thapar Corporate R&D
Centre, Patiala, India, in 1988 and later in 1995 he joined
Department of Computer Science at Punjabi University, Patiala.
He is actively involved both in teaching and research. His
current areas of research are- Natural Language Processing and
Optical Character recognition. He has published more than 25
research papers in various international and national journals
and refereed conferences. He has been actively involved in
technical development of Punjabi and has to his credit the first
Gurmukhi OCR, Punjabi word processor with spell checker and

various transliteration software. He was the chief coordinator of
the project “Resource Centre for Indian Language Technology

Solutions- Punjabi”, funded by the Ministry of Information
Technology as well as the coordinator of the Special Assistance
Programme (SAP-DRS) of the University Grants Commission
(UGC), India. He was also awarded a research project by the
International Development Research Centre (IDRC) Canada for
Shahmukhi to Gurmukhi Transliteration Solution for
Networking.

JOURNAL OF EMERGING TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 5, NO. 2, MAY 2013 161

© 2013 ACADEMY PUBLISHER

https://springerlink3.metapress.com/content/978-3-642-19402-3/
https://springerlink3.metapress.com/content/1865-0929/

