
 1

A Comparative Study of Data Structures for Punjabi Dictionary

G S lehal, Kulwinder Singh
Department of Computer Science and Engineering, Punjabi University, Patiala, India.

Abstract

In this paper, the implementation issues involved in an electronic dictionary for Punjabi have been studied. The
commonly used data structures for English dictionary have been modified to suit the non-linear nature of
Punjabi. A comparison is made of the time and space used by these data structures and conclusions made about
their suitability for different applications.

Keywords : Punjabi Dictionary; Data Structures, Trie, Binary Search tree

1. Introduction

Electronic dictionaries are now being widely used for word processing, natural language processing and post
processing in OCR systems. The structure of the dictionary is of great importance: it has a large effect on the
performance of overall system and must therefore allow very fast searches. There are a number of ways in
which a dictionary can be organised depending upon the core memory, access speed required and application
area of the dictionary. A survey of adequate data structures for the representation of dictionaries is given by
Knuth[1], Kukich[2] and Takahashi et al[3]. Peterson[4] discusses some of the organizations for interactive
spelling checker application.

The structure of the Gurmukhi script, the script for Punjabi, is non-linear i.e. besides 41 consonants of the
language, there are other symbols such as Laga, Lagakhar etc, which are described in detail in next section,
which are used to represent the phonetic structure of the word. These symbols inherently decorate the
consonant. For example, the word ‘COMPUTE’ as written in English, the character ‘O’ is called the colleague
of ‘C’, ‘M’ is called the colleague of ‘O’ and so on, but in Punjabi it will be written as ‘�������’ where
character ��is said to be wearing a cap	�� is holding a stick and �is wearing shoes. Keeping in mind this non-
linear structure some of the most common data structures for electronic English dictionary have been modified
to suit the needs of Punjabi dictionary. A study and comparison of these structures in terms of time and space is
made and discussed in this paper.

2. Punjabi Language and Gurmukhi Script
Gurmukhi Script consists of 41 alphabets called Vianjan. There are 10 vowels symbols called Laga. The various
types of symbols used to write the vowels are listed in figure 2 Of these Kanna and Bihari are written after,
Sihari before, Dulankarh and Onkarh under, and Horha, Kanorha, Laanv, Dulaanv over the letters they
vocalize. Tippi (��) and Bindi (
) are the two symbols to accommodate nasal sounds. Adhak (�) is used

for reduplication of sound of any consonant. They (Tippi, Bindi, Adhak) are called Lagakhar because they

always come in combination with Laga. We also have two half characters or Sanyukat akhar (��and��)
placed at the feet of the consonants.
It has been seen that the arrangement of letters here is more systematic than that of the English alphabets, those
of each class and subclass being placed together. Thus, three vowels forms stand at the head, followed by four
classes of consultant. First, we have the Sibilant and Aspirant, each of these classes being represented by one
letter only; then the mutes, subdivided into five classes, each containing five letters; and finally the five
semivowels; if the mutes be read in columns downwards it will be found that the five classes are arranged in
order of organs by the aid of which they are pronounced, beginning with throat and ending with lips. The
complete set of consonants are shown in figure 1.

 2

Fig 1 : Punjabi Language Alphabet

Figure 2 : Table showing the Laga of Punjabi Language

3. Data Structures Implemented for Punjabi
The English script has been designed in such a way that it can be used linearly. No English character ever wears
a shoe, or cap, or holds a stick like the Punjabi characters. The Gurmukhi script is the sequence of its
consonants called Vianjan with its associated vowel symbols called Laga and any other symbols such as
Lagakhar or Sanyukat akhar as mentioned in previous section. So, keeping in mind the features of Gurmukhi
script, we have implemented different data structures for Punjabi dictionary along with the different data
structures for Punjabi word format. The various data structure for Punjabi dictionary are:

 3

3.1 Binary Search Tree
The simplest data structure that was implemented and tested is the binary search tree. In each node of the tree a
complete Punjabi word is stored. Ten different binary trees , where each tree stored words of same length, were
simultaneously used. For determining the word length, the vowel symbols Laga and other symbols such as
Lagakhar or Sanyukat akhar, were treated as a single character.

3.2 Trie

The idea of trie memory, which takes advantage of the redundancy of common prefixes, was first introduced by
Fredkin [5]. According to Fredkin, a trie is a particular tree structure that contains only one character at each
node. Each node may have ordered links to descendant nodes whose number maximally equals the number of
the letters of the underlying alphabet. In particular, the root of a trie has up to n descendants where n
corresponds to the first letters of a fixed vocabulary. Word access in a trie is strictly performed character by
character beginning at the root of the trie. Nodes that represent the last character of a word are always marked
by a special flag stopping the search process.

Tries are attractive because of their simple and compact storage allocation. Common prefixes are stored exactly
once. In addition, they allow the integration of sophisticated error correction algorithm for dealing with noisy
input, although problems arise when beginning of a word is erroneous. For large dictionaries the trie is not the
best choice because considerable time would be spent traversing links from one character to the next. Another
disadvantage is the waste of storage due to storing additional pointers and housekeeping information.

For Punjabi dictionary, we have further implemented two types of tries. The first trie is the one suggested by
Sukhjeet[6] which takes care of non-linear nature of the Gurmukhi script. Each node in a trie is represented by
the following structure:

RECORD Node
 BEGIN
 Syllable : SylllableType
 Flag : Boolean
 UpPtr : Pointer to Node
 DownPtr : Pointer to Node
 END

RECORD SyllableType
 BEGIN
 Vianjan : CharacterType
 Laga : VowelType
 Lagakhar : LagakharType
 END

BITS LAGAKHAR BITS LAGA
00 - 0000 Mukta
01 Bindi 0001 Kanna
10 Tippi 0010 Sihari
11 Adhak 0011 Bihari
 0100 Laanv
 0101 Dulaanv
 0110 Onkarh
 0111 Duankarh
 1000 Horha
 1001 Kanorha

 Figure 3 : Bit Fields for Lagakhars and Lagas of Punjabi

In the structure SyllableType, the Vianjan field will store the main consonant and will be of character type.
Since there are 41 main consonants and 2 Sanyukat akhar in Punjabi, so this field will require at the most 6 bits
giving total of 64 bit combinations out of which first 43 will mark the different Vianjans and Sanyukat akhar.

 4

The Laga field will be used to store the related vowel with consonant. Since there are 10 vowels in Punjabi so
this field will require at most 4 bits giving total of 16 bit combinations out of which first 10 will mark the
different vowels and rest 6 will be Don’t care condition as shown in figure 3.The Lagakhar field will store the
associated symbol for representing nasal or dual sounds. There are three such symbols in Punjabi namely Bindi,
Tippi, and Adhak, so the field will be of length 2 bits as shown in figure 3. So, the Syllable will store the
Vianjan and its associated symbols such as Laga and Lagakhar.

The field named Flag is a boolean field which will have value ‘TRUE’ if the Syllable part of the node is the last
one in the word. This will mean that at this point the word can be considered as complete Punjabi word. The last
two fields are similar as they both store the address of another node. The UpPtr pointer will be used to maintain
the list syllable that can come at the same position in the word at the same level in the tree, whereas the
DownPtr pointer will be used to store the list of syllable that can come after the occurrence of current syllable
i.e. list of nodes at the next level of trees.

In this structure the root will contain the starting syllable for the group of words to be stored in the tree and its
DownPtr pointer will point to the list of words that can occur at the second level from the start. Similarly
DownPtr pointers of all the nodes at the second level of the tree will point to the list of syllables maintained by
the UpPtr pointers, that can come at the third position from the beginning and so on.

In the second implementation of trie, each node is represented by the following structure:
RECORD Node
 BEGIN
 Splitchar : CharacterType
 Flag : Boolean
 UpPtr : Pointer to Node
 DownPtr : Pointer to Node

END
In this structure, the Splitchar field is of character type which will have only one character, which may be a
Vianjan, or a Laga, or a Sanyukat akhar. The role of UpPtr and DownPtr pointers is similar to that as described
earlier in this section. The Flag Field is also similar to as mentioned in this section.

3.3 Ternary Search tree
Another data structure to store the dictionary is ternary search tree, which is suggested by Jon Bentley and Bob
Sedgewick [7]. Ternary search trees combine attributes of binary search trees and digital search tries. Like tries,
they proceed character by character. Like binary search trees, they are space efficient, though each node has
three children, rather than two. A search compares the current character in the search string with the character at
the node. If the search character is less, the search goes to the left child. If the search character is greater, the
search goes to the right child. When the search character is equal, though, the search goes to the middle child,
and proceeds to the next character in the search string. Each node in a ternary search tree is represented by the
following structure:
RECORD Node

BEGIN
 Syllable : SyllableType
 Flag : Boolean
 LowPtr : Pointer to Node
 EqPtr : Pointer to Node
 HighPtr : Pointer to Node
 END

RECORD SyllableType
 BEGIN
 Vianjan : CharacterType
 Laga : VowelType
 Lagakhar : LagakharType
 END
The SyllableType and the Flag field are similar to that as mentioned earlier. The last three fields store the
address of another node, but their significance lies in different context. The LowPtr pointer will be used to
maintain the list of syllables that are less than syllable at the current node; the HighPtr pointer will be used to
maintain the list of syllables that are greater than syllable at that node, whereas the EqPtr pointer will be used to
store the list of syllables that can come after the occurrence of syllable at that node.

 5

In this structure the root will contain the starting syllable for group of words to be stored in the tree.

3.4 Multi-way Tree

For our application a 56-way tree (especially for Gurmukhi Script) with a route for each letter at every node has
been implemented. In multi-way tree, searching is simple, efficient and fast, as is its construction, however the
memory overhead is large. So, in order to reduce this memory overhead, we have used linked list instead of
static array of 56 pointers. To make searching efficient and fast, we have used bitfields. So, each node of the
tree is represented by the following structure:
 RECORD Node
 BEGIN
 Bitfield : BitfieldType
 Splitchar : CharacterType
 Flag : Boolean
 NextPtr : Pointer to LinkedListType
 END

 RECORD LinkedListType
 BEGIN
 InfoPtr : Pointer to Node
 LinkPtr : Pointer to LinkedListType
 END
So, instead of having 56 pointers to indicate the next letters in word, this method uses a 56 bitfields, out of
which the bits are set (i.e. = 1) if that letter is allowable, and not (i.e. = 0) if that letter is not allowable, and
corresponding entry of node, holding that letter, is made in the linked list. The Splitchar and Flag fields are
similar to as mentioned earlier. The next pointer will be used to store the address of LinkedListType structure.

In the structure LinkedListType, InfoPtr pointer will be used to store the address of node and LinkPtr pointer
will be used to store the address of next LinkedListType structure.

3.5 Reduced Memory Method Tree

The alternative data structure, devised by C. J. Wells et.al.[8], which includes the advantages of the 56-way tree
method, but reduces memory considerably, was adapted for Punjabi dictionary. Each node in a reduced memory
method tree is represented by the following structure
 RECORD Node
 BEGIN
 Bitfield : BitfieldType
 Flag : Boolean
 NextArrayPtr : Pointer to Array of Node Pointer
 END

Here, in this structure, node does not contain the character type field as in case of multi-way tree. Bitfield is of
56 bits similar to the multi-way tree. The purpose of bitfield is also same. Each node also has one NextArrayPtr
pointer which, if used, points to a variable length array of pointers to nodes (i.e. 56 bits + 1). The field named
flag is a boolean field will have value ‘TRUE’ if the character is the last one in the word.

When searching for a particular string, it is apparent immediately at any node whether the required route from
that node exists or not by checking the relevant bit of the 56 flags. If it is set, that route is followed. This means
counting how many of 56 bits are set up to and including the required one, to establish which member of the
pointer array to the follow to next level in the tree.

4 Results and Conclusion

We have implemented five data structures i.e. binary search tree, trie, ternary search tree, multi-way tree, and
reduced memory method tree for a Punjabi dictionary [9] of twenty six thousands words. The results of
experiment done on these implementations in context of memory used, time taken for successful and
unsuccessful search, and all other factors are shown in Table 1. These results are obtained on a Compaq
Deskpro Pentium II with 64 Mb of main memory. For experiment a text of 20,000 words was used, which
consisted of 10,000 valid and 10,000 invalid words.

 6

It is observed that Binary Search Tree is the most suitable data structure in terms of memory consumed and time
taken for successful as well as unsuccessful search for words. The limitation of Binary Search Tree is that it is
very difficult to offer a suggestion list or to look up all words differing by 1 or 2 characters. This limitation can
be removed by using Trie structure. In case of trie, too, the trie in which each node contains the information of
the Laga and Lagaakhar associated with each consonant is more memory efficient than the trie in which each
consonant, Laga and Lagaakhar are separately stored at each node. The processing time for both tries was same
for successful as well for unsuccessful searches. The ternary search tree was more memory efficient than the trie
in which each node stored one character, but is inferior to that trie in terms of searching speed. The multi-way
tree is the bulkiest and slowest data structure while reduced memory tree also does not provide much
improvement, the reason being that in case of Punjabi the tree is 56 way as compared to 26 way tree in English
ans thus space is need and to store all 56 possible paths and consequently more time is taken to search and
traverse the correct path.

Successful searches on
10,000 words

Unsuccessful searches on
10,000 words

Tree Type Memory
used(Mb)

No. of nodes
searched

Search
time (sec)

No. of nodes
searched

Search time
(sec)

Binary Search Tree 0.4 316,668 7 140,192

8

Trie (storing syllable
in node)

0.5 1,940,342 7 1,241,267 7

Trie(storing character
in node)

0.8 2,041,754 7 1,436,338 7

Ternary Search Tree 0.6 228,912 9 78,684 9
Reduced Memory
Method Tree

0.8 54,989 10 29,222 9

Multi-way Tree 1.3 441,754 10 85,914 10

Table 1 : Memory requirements and processing times for different types of trees

5. References

[1] D. E. Knuth, “Digital searching”, The Art of Computer Programming, Addison-Wesley, Reading,
Massachusetts, vol. 3, 1973, pp. 481-499.

[2] Karen Kukich, “Techniques for automatically correcting words in text”, ACM Computing Surveys, vol. 24,
no. 4, 1972, pp. 377-439.

[3] H. Takahashi, N. Itoh, T. Amano, and A. Yamashita, “A spelling correction method and its application to
an OCR system”, Pattern Recognition, vol. 23,no.3/4, 1990, pp. 363-377.

[4] J. L. Peterson, Computer Programs for Spelling correction, Springer-Verlag, Berlin(1980).
[5] E. Fredkin, “Trie Memory”, Commun. of the ACM, vol. 3, no. 9, 1960, pp. 490-500.
[6] Sukhjeet Kaur, Development of spell checker with grammar and electronics dictionary for Punjabi word

processor, An M.Tech. thesis submitted to Dept. Of comp. Sc. & Eng., Punjabi University, Patiala, 1997.
[7] Jon Bentley and Bob Sedgewick, “Ternary search trees”, Dr. Dobb’s Journal, April 1998, pp. 20-25.
[8] C. J. Wells, L. J. Evett, P.E. Whitby and R. J. Whitrow, “Fast dictionary look-up for contextual word

recognition”, Pattern Recognition, vol. 23, no. 5, 1990, pp. 501-508.
[9] Punjabi-English Dictionary, Publication Bureau, Punjabi University, Patiala, 1994.

