
 A Gurmukhi Collation Algorithm
G S Lehal

Department of Computer Science & Engineering,
Punjabi University, Patiala.

gslehal@yahoo.com

Abstract. Sorting and Indexing is one of the basic necessities of the database management system. But unfortunately
there does not exist any software for automatic sorting of Punjabi words. The collating sequence provided by ISCII or
UNICODE is not adequate. Separate rules have to be written for sorting. In this paper we discuss the various issues
involved in sorting of Gurmukhi text and present a Gurmukhi collation algorithm. Gurmukhi, like other Indian
languages has a unique sorting mechanism. Unlike English, consonants and vowels have different priorities in sorting.
Words are sorted by taking the consonant’s order as the first consideration and then the associated vowel’s order as the
second consideration. In addition there is another complication. The properly sorting “characters” in Gurmukhi often
requires treating multiple (two or three) code points as a single sorting element. Thus we cannot depend on character
encoding order to get correct sorting instead we have to develop using sorting rules of Gurmukhi linguistic collation
function which convert the word into some intermediate form for sorting.

Keywords : Collation, multi-level sorting, Indexing, Gurmukhi

1. INTRODUCTION

Sorting and Indexing is one of the basic necessities of the database management system. But
unfortunately there does not exist any software for automatic sorting of Gurmukhi words. The
collating sequence provided by UNICODE or ISCII is not adequate, as it is not compatible with the
traditional sorting for Gurmukhi words. In fact, the first character itself in ISCII for Gurmukhi is n
while traditionally T is the first character in the alphabet set of Gurmukhi.

Sort orders vary from culture to culture, and many specific applications require variations.
Languages vary not only regarding which types of sorts to use, but also in what constitutes a
fundamental element for sorting. For example, Swedish treats Latin capital A with Diaeresis as an
individual letter, sorting it after z in the alphabet; Germen, however sorts it either like ae or like
other accented forms of a.. following a.Combinations of letters can be treated as if they were one
letter. For example, in traditional Spanish "ch" is treated as a single letter, and sorted between "c"
and "d". As a result, it is neither possible to arrange characters in an encoding in an order so that
simple binary string comparison produces the desired collation order, nor is it possible to provide
single-level-sort-weight tables. To address the complexities of culturally expectant sorting, a
multilevel comparison algorithm is typically employed. Each character in string is given several
categories of sort weights. Categories can include alphabetic, case and diacritic weights, among
others. In a first pass, these weights are accumulated into a sort key for the string. At the end of the
first pass, the sort key contains a string of alphabetic weights, followed by a string of case weights,
and so on.

Gurmukhi, like other Indian languages has a unique sorting mechanism. Unlike English, consonants
and vowels have different priorities in sorting. Words are sorted by taking the consonant’s order as
the first consideration and then the associated vowel’s order as the second consideration. In
addition there is another complication. The properly sorting “characters” in Gurmukhi often
requires treating multiple (two or three) code points as a single sorting element. Thus we cannot
depend on character encoding order to get correct sorting instead we have to develop using sorting
rules of Gurmukhi linguistic collation function which convert the word into some intermediate
form for sorting.

In this paper we discuss the various issues involved in sorting of Gurmukhi text and present an
algorithm for Gurmukhi collation.

2. GURMUKHI SCRIPT

Punjabi is the world’s twelfth most widely spoken language. The populace speaking Punjabi is not
only confined to North Indian states such as Punjab, Haryana and Delhi but is spread over all parts
of the world. In fact there are more people using Punjabi on computers abroad than in India.
Punjabi is written in Gurmukhi script. It had been introduced by Guru Angad Dev of Sikhs in
sixteenth century. Some of the major properties of the Gurmukhi alphabet are:

 Gurmukhi script alphabet consists of three (u a e) vowel-carrier letters and nine vowel signs.
By using the vowel signs with the three vowel-carrier letters ten vowels are obtained. The
vowel-carriers u and e are never used without a vowel sign.

 There are 38 consonants and all the ten vowel-signs are used with all the other consonants (Fig.
1).

 In addition there are two nasal signs : (bindi) and ̂ (tippi) used for sounds produced through
nasal cavity. The symbol adhak & , is used to produce the sound of a double consonant.

 There are three half characters in Gurmukhi alphabet. The complete character set of Gurmukhi
is depicted in Fig. 1.

Vowels
a aA ie eI uU u< eE a> o aO

Vowel carriers
u a e

Consonants
 s h
c k g G L
C x j J M
t T D Q N
V W d Y n
p f b B m
y r l v R
S z K F Z æ

Matras
A i I U < E > ~ O

Vowel Modifiers or Half Vowels
 : ̂ &

Half Characters

 H q X
Fig 1 : Gurmukhi character set

3. ISSUES IN GURMUKHI SORTING

Gurmukhi text sorting two main factors have to be taken into consideration:

1. Deciding the collating sequence.
2. Taking care of primary, secondary and tertiary weight levels to be assigned to some

characters.
After discussions with linguists and studying in detail the alphabetic order in Punjabi
dictionaries[Singh 1991], the collating sequence and the collating code to be assigned to various
Gurmukhi characters as displayed in Table 1 is developed. For convenience of non-Punjabi readers,
the equivalent Roman transliteration is also provided in Table 1. For some Punjabi characters such
as T, J and &
there are no equivalent Roman symbols.

 Table 1 : Gurmukhi collating sequence and collating code

Code Punjabi
Symbol

Equivalent
Roman

128 :
129 &
130 ̂
131 T
132 T[u
133 T{ oo
134 U o
135 n a
136 nk aa
137 n? ay
138 n" au
139 J
140 fJ i
141 Jh ee
142 J/ e
143 ; s
144 F sh
145 j h
146 e k
147 y kh
148] Kh
149 r g
150 | G
151 x gh
152 C Mg
153 u ch
154 S chh

155 i j
156 } Z
157 M jh
158 R Mj
159 N T
160 m Th
161 v D
162 Y Dh
163 D n
164 s t
165 E th
166 d d
167 X dh
168 B n
169 g p
170 c ph
171 \ f
172 p b
173 G bh
174 w m
175 : y
176 o r
177 b l
178 ba L
179 t w
180 V rh
181 H

182 q

183 X

184 A aa

185 i i

186 I ee

187 U u

188 < oo

189 E e

190 > ay

191 ~ o

192 O au

The above collating sequence is different than the one provided in ISCII or Unicode.

Based on the collating sequence provided in Table 1, GiB < GikT[Dk < GikJ/ < Gk

Since B < k so GiB < GikT[Dk
as T[< J/ thus GikT[Dk < GikJ/
and as i < k thus GikJ// < Gk

3.1 Semi-Vowels or Vowel Modifiers

The semi-vowels do not participate in primary sorting but they play their role in secondary sorting.
The words are first sorted in lexicographic order based on Table 1 after ignoring the semi-vowels
and next, equivalent strings, i.e. words differing by their semi-vowels only, are sorted among each
other using the collating order of the semi-vowels and their position in the word.
Among the semi vowels the collating sequence is : < & < *
Thus if have to sort the words jV j&V j^V jVn j&g j^g
Then in the first pass the sorted order will be
(j&g = j^g) < (jV = j&V = j^V) < jVn . To resolve the ties, we look at the collating sequences of
the semi-vowels and thus get the following order:
j&g < ĵg < jV < j&V < ĵV < jVn

3.2 Ignorable characters

Another class of cases involves ignorable characters such as spaces, hyphens, and some other
punctuation marks. In this case, the character itself is ignored unless there is no other difference
between the strings. Thus for example blackbird < black-bird < blackbirds. In Gurmukhi, the
hyphen has a very high frequency of occurrence. Hyphen is part of many Punjabi words such as G{s-
gq/s N/qv-wkoe d{o-fdqFNh eVkj-gqFkd feogk-fdqFNh ftZfdnk-gqBkbh etc. In fact from a statistical analysis of
all the Punjabi words and their inflections it was found that the hyphen has 0.75% of
occurrence[Singh 1991], which is higher than many other Gurmukhi characters such as v, c, X etc.
Usually both the spellings, with and without hyphen are commonly used for many Gurmukhi
words.
At the third level, we have taken care of hyphens present in Gurmukhi words. The words are sorted
after ignoring the hyphens present. The equivalent words are then checked for presence of hyphen.
Using this scheme kEVIbARI < kEVI-bARI < kEVIbARIaA:

3.3 Conjunct Consonants
Combination of two consonants is called conjunct consonants. In the combination, the first
consonant is written fully, while the latter is written as a symbol below the first consonant but

pronounced fully. In Gurmukhi only three letters h,r,v are used as conjunct symbols. The symbols

of these conjunct consonants are H, q and X . Thus for example, the word pqEm is pronounced as
half p + rE + m. It is also important to note that the vowel sign attached with the consonant is
associated with the half character rather than the consonant under which the half character is lying.
Thus pqEm is not pronounced as half pE + r + m but is is pronounced as half p + rE + m. So internally
the order of storage is consonant followed by half character and then the vowel sign associated with
the half character. Also the vowel sign i is written before a consonant but as its sound is produced
after the consonant so internally it is stored after the consonant.
As it can be observed from Table 1, in the collating sequence, the vowels come in the first place,
followed by the consonants and half characters in that order. Thus icqaA < cqEn < cAr as internally icqaA
is stored as c + q + i + aA , cEqn is stored as c + q + E + n while cAr is internally stored as c + A +
r and since q < A and i < E so icqaA < cqEn < cAr
By the same logic srnA < s>X < sAr

4. ALGORITHM

We have developed a general sorting algorithm, which works on text encoded in any popular
Gurmukhi font or ISCII. Since we have multiple-level comparisons to be carried out, so first the
text to be sorted is transformed into a collation element table and then into equivalent sort
keys[Davis and Whistler]. These sort keys might consist of a string of base weights followed by
strings for weights used for secondary and tertiary differences. These keys are then sorted based on
some sorting algorithm. In databases, these sort keys may be separately permanently in stored a
field, obviating recomputation when a list needs to be re-sorted.
The algorithm makes use of following three levels as follows:

1. alphabetic ordering
2. semi-vowel ordering
3. hyphen based ordering.

A Collation Element Table contains a mapping from one (or more) characters to one collation
element, where a collation element is an ordered list of two 8-bit weights (w1 and w2) and a
third one bit weight w3. Each collation element corresponds to a consonant, vowel or half
character optionally followed by a semi-vowel and/or hyphen. The weight w1 represents the
collating code for the consonant, vowel or half character. If the character combinations
contains a semi-vowel, then the weight w2 is assigned the collating code of semi-vowel else
w2 is assigned value 0. Similarly if hyphen is a part of the character combination, the weight
w3 is assigned value 1 else it is 0.

The following are sample collation elements that are used in the examples illustrating the
algorithm.

Character(s) Collation Element
u [131.0.0]

uU- [132.0.1]

uU: [132.128.0]

uU& [132.129.0]

a [135.0.0]

a^- [135.130.1]

In the above example, for the first character combination, there is only a single character u and no
semi-vowel or hyphen and so in the equivalent collation element, w1 = collating code of u , while
w2 and w3 are equal to 0. Similarly in the character combination, â-, w1 = collating of a, w2 =
collating code of ̂ and w3=1, since hyphen is present in the character combination.

The main algorithm has four steps. First is to normalize each input string, second is to produce an
array of collation elements for each string, and third is to produce a sort key for each string from
the collation elements. Two sort keys can then be compared with a binary comparison; the result is
the ordering for the original strings.

4.1 Normalize each input string

Step 1. Produce a normalized form of each input string, applying S1.1 to S1.3. This step is needed
for font encoded strings only, where the vowel modifier i is stored before the consonant, but for
sorting purpose its position has to be changed. Additionally the user can type consecutive occurring
semi-vowels/upper vowels and half character/lower matra ([or {) in any order and they all look
visually similar. For example, the word y[bQ/ can be typed by the typist as y + [+ b + Q + / or as y +
[+ b + / + Q and both will be displayed as y[bQ/ but the first word y[bQ/ < y[Zb/ while the second y[bQ/ >
y[Zb/, if we compare the two words character by character according the collating sequence of Table
1.

S1.1 Swap the positions of the vowel modifier i and its associated consonant. As already discussed,
this step will not be needed for strings encoded in ISCII or Unicode as it has already been taken
care of.

• For example, “isr” is rearranged as “sir”.

S1.2 If a half character or a lower matra ([or {) and a semi-vowel occur together , then in case
the semi-vowel comes before the half character or lower matra, interchange the two.

• For example, if “hMUde” is entered as h + M + u + d + e then after S1.2 it will be internally
rearranged as h + u + M + d + e.

S1.3 If a half character occurs in the string, then if there is a vowel sign immediately before it then
interchange the two characters.

• For example, “icqaA” after S1.1 will be internally rearranged as c + i + q + a + A and after
S1.3 will be internally stored c + q + i + a + A.

• Similarily, if the word “pER`isMg” is typed as p + E + ` + R + i + s + M + g , after steps
S1.1-S1.3 it will be internally stored as :

i. After S1.1 : p + E + ` + R + s + i + M + g
ii. After S1.2 : p + E + R + ̀+ s + i + M + g
iii. After S1.3 : p + R + E + ̀+ s + i + M + g

4.2 Produce an array of collation elements for each string

Step 2. The collation element array is built by sequencing through the normalized form as follows:

S2.1 i=0; j=0;
S2.2 c=string[j]
 If c not equals one of the semi-vowel or punctuation mark, then
 w1[i]=collation code of (c) (Table 1)
 w2[i]=0
 w3[i]=0
 increment i
 else if c equals semi-vowel
 w2[i-1] = collation code of(c) (Table 1)
 else if c equals hyphen
 w3[i-1] = 1

S2.3 Increment j.

S2.4 GoTo S2.2 until the end of the string is reached.

Example:
normalized
string: collation element array: [w1.w2.w3]

j&g [155.129.0], [149.0.0]

j^g [155.130.0], [149.0.0]

jg [155.0.0], [149.0.0]

jgV [155.0.0], [149.0.0], [164.0.0]

j>c [155.0.0], [190.0.0], [146.0.0]

jg-mg [155.0.0], [149.0.1], [174.0.0], [149.0.0]

4.3 Form a sort key for each string

Step 3. The sort key is formed by successively appending weights from the collation element array.
It is implemented in the following steps:

S3.1. For each collation element in the collation element array append w1 to the sort key.

S3.2. For each collation element in the collation element array append w2 to the sort key.

S3.3. For each collation element in the collation element array append w3 to the sort key.

Example:
collation element array: sort key:
[155.129.0], [149.0.0] 155 149 129 0 0 0

[155.130.0], [149.0.0] 155 149 130 0 0 0

[155.0.0], [149.0.1], [174.0.0], [149.0.0] 155 149 174 149 0 0 0 0 0 1 0 0

[155.0.0], [190.0.0], [146.0.0] 155 190 146 0 0 0 0 0 0

[155.0.0], [149.0.0], [164.0.0] 155 149 164 0 0 0 0 0 0

4.4 Compare the sort keys

Step 4. Compare the sort keys for each of the input strings, using a binary comparison. This means
that:

• Level 3 differences are ignored if there are any Level 1 or 2 differences

• Level 2 differences are ignored if there are any Level 1 differences
• Level 1 differences are never ignored.

Example:
String Sort Key

;P? 143 183 190 000 000 000 000 000 000

sAr 143 184 176 000 000 000 000 000 000

jg 155 149 000 000 000 000
j&g 155 149 129 000 000 000
ĵg 155 149 130 000 000 000
jgV 155 149 164 000 000 000 000 000 000

jgmg 155 149 174 149 000 000 000 000 000 000 000 000
jg-mg 155 149 174 149 000 000 000 000 000 001 000 000
jgmgA 155 149 174 149 184 000 000 000 000 000 000 000 000 000 000
j>c 155 190 146 000 000 000 000 000 000

The differences that produce the ordering are shown by the bold underlined items:

Formally, the Gurmukhi Collation algorithm is described in Fig. 1.

Gurmukhi Collation Algorithm

type
 CollitionElement = Record
 w1, w2, w3 : byte;
 end;
 SortKey :Array of Byte;
var
 Words : Array of String;
 NormalizedWord : String;
 CE : Array of CollitionElement;
 SK : Array of SortKey;
 i, count : integer;
begin
 i := 0;
 While i < count do
 begin
 Normalize(Words[i], NormalizedWord);
 GenerateCollationElement(NormalizedWord, CE);
 GenerateSortKey(CE, SK[i]);
 i++;
 end;
 Sort(SK, Words);
end;

Fig. 1 : Gurmukhi Collation algorithm

Count stores the number of elements in array Words.
The procedure Normalize(S1, S2) normalizes the string S1 and stores the normalized form in string
S2 as discussed in 4.1
The procedure GenerateCollationElement(S1, CE) generates the CollitionElement array, CE, from
normalized string S1 as discussed in 4.2.

The procedure GenerateSortKey(CE, SK) converts the CollitionElement array, CE, to SortKey SK
as described in 4.3.
The procedure Sort(SK, Words) sorts the array SK using any of the standard sorting algorithm and
simultaneously rearranges Words to produce the sorted output.

5. CONCLUSION
This is the first time that sorting for Gurmukhi has been implemented according to the Gurmukhi
dictionary layout. Table 2 displays a set of Gurmukhi words automatically sorted based on the
collating sequence and Gurmukhi sorting rules discussed in above sections.

Table 2 : Sorted list of Gurmukhi words

Sequence Word

1. T[gkT{
2. T[gkn
3. T[gkfJnk
4. T[gkfJnkI
5. T[&ZGo/Irk
6. T[Go/rh
7. T[&ZGo/Irh
8. ;Vk
9. ;P;Esk
10. ;PzpokI
11. ;P?
12. ;[bQk
13. ;[b/y
14. ;'baQkI
15. ;'bkI
16. FwQkI

A Gurmukhi sorting utility, based on above algorithm, has been provided in Akhar, a Punjabi word
processor. An electronic Punjabi-English dictionary has also been developed in MSAcess, which
has been indexed on Punjabi words using the above collation algorithm.

References:

1. Harkirat Singh, “ Punjabi Shabad-Roop te Shabad Jorh Kosh”, Punjabi University, Patiala.
(In Punjabi)

2. Mark Davis, Ken Whistler: "Unicode Technical Standard #10, Unicode Collation Algorithm"
(http://www.unicode.org/unicode/reports/tr10/)

http://www.unicode.org/unicode/reports/tr10/

	 A Gurmukhi Collation Algorithm
	
	C x j J M
	t T D Q N
	 H q X
	Fig 1 : Gurmukhi character set

	3. ISSUES IN GURMUKHI SORTING
	jh

	4.1 Normalize each input string
	4.2 Produce an array of collation elements for each string
	4.3 Form a sort key for each string
	4.4 Compare the sort keys

