
Indian Journal of Science and Technology, Vol 8(27), DOI: 10.17485/ijst/2015/v8i27/83917, October 2015
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

Abstract
Spellchecker is a software tool that identifies and corrects any spelling mistakes in a text document. Designing a spell
checker for Punjabi language is a challenging task. Punjabi language can be written in two scripts, Gurmukhi script (a Left
to Right script based on Devanagari) and Perso-Arabic Script (a Right to Left script) which is also referred as Shahmukhi.
Gurmukhi script follow ‘one sound - one symbol’ principle where as Shahmukhi follows ‘one sound - multiple symbol’ prin-
ciple. Thus making Shahmukhi text even more challenging which complicates the design of spell checker for Shahmukhi
text. The text written in Shahmukhi normally does not have short vowels and diacritic marks. So missing some of diacritic
marks should not be considered as a mistake. But for Holy books like Quran, missing diacritic marks are considered as a
mistake. So spell checker is designed in such a way that it can spell check with and without diacritic marks compulsion,
which depends on user’s selection to spell check. In addition to this, Shahmukhi text has complex grammatical rules and
phonetic properties. Thus it needs different algorithms and techniques for expected efficiency. This paper presents the
complete design and implementation of a spell checker for Shahmukhi text.

Design and Implementation of Shahmukhi
Spell Checker

Kawarbir Singh Dhanju1*, Gurpreet Singh Lehal1, Tejinder Singh Saini2 and Arshdeep Kaur1

1DCS, Punjabi University, Patiala - 147 002, Punjab, India; kbs.dhanju@gmail.com, gslehal@gmail.com,
akaur448@yahoo.com

2ACTDPL, Punjabi University, Patiala - 147 002, Punjab, India tej@pbi.ac.in

Keywords: Edit Distance, Gurmukhi, Punjabi, Shahmukhi, Spellchecker, Typing Errors

1. Introduction
Spellchecker is a software tool that identifies and corrects
any spelling mistakes in a text by checking the spellings
of the words in a document, validate them i.e. checks
whether they are right or wrongly spelled and in case the
spell checker has doubts about the spelling of the word, it
suggests possible alternatives.

The main steps performed by the spell checker are:

•	 Input Shahmukhi words from user document.
•	 Pre-process the words.
•	 Detect the erroneous word by searching it from the

dictionary.
•	 In case, the word is erroneous, suggest possible alter-

natives.

Even though it looks simple but to write Punjabi in
Shahmukhi script is complex than other languages such

as English, Hindi. Thus existing algorithms and tech-
niques are not suitable for the design of spell checker for
Shahmukhi script.

2. Brief Description of Punjabi
Language
Punjabi language is 10th most widely spoken language
in the world. It is spoken by 102 million speakers world-
wide12. It is the native language of the Punjabi people
who inhabit the historical Punjab region of Pakistan and
India. Punjabi can be written in two Scripts Gurmukhi
and Shahmukhi. Gurmukhi is used to write Punjabi in
India and Shahmukhi is used to write Punjabi in Pakistan.
Shahmukhi is basically Punjabi text written is Perso-
Arabic Script (a Right to Left script). Shahmukhi text
has complex grammatical rules and phonetic properties.
In Pakistan Punjabi written in Shahmukhi script is not

*Author for correspondence

Design and Implementation of Shahmukhi Spell Checker

Indian Journal of Science and Technology2 Vol 8 (27) | October 2015 | www.indjst.org

an official language so very little support and resources
are available for Shahmukhi script. In fact this is the first
time a spell checker support for Shahmukhi text has been
designed and implemented.

2.1 Shahmukhi Script
The meaning of “Shahmukhi” is “from the King’s
mouth”1–3,10. The Shahmukhi text was first used by the
Sufi poets of the Punjab, and then Muslim populace in

Sr. Shahmukhi Unicode Sr. Shahmukhi Unicode

1 bco] ھب 06BE + 0628 6 [ʧʰ] ھچ 0686 + 06BE

2 p6 067E + 06BE] ھپ 7 [ḓʰ] ھد 062F + 06BE

3 [ṱṱ] ھت 062A + 06BE 8 [ɖʰ] ھڈ 0688 + 06BE

4 [ṱṱ] ھٹ 0679 + 06BE 9 k9 06A9 + 06BE] ھک

5 [ʤʰ] ھج 062C + 06BE 10 gC 06AF + 06BE] ھگ

Table 1. Common aspirated consonants

Sr. Shahmukhi Unicode Sr. Shahmukhi Unicode
1 0628 [b] ب 21 [t]ط 0637

2 [p] پ 067E 22 [z]ظ 0638

3 [t] ت] 062A 23 [?]ع 0639

4 [t] ٹ 0679 24 [r]غ 063A

5 [s]ث 062B 25 [f]ف 0641

6 [d3] ج 062C 26 [q]ق 0642

7 [tf]چ 0686 27 [k]ک 06A9

8 [h] ح 062D 28 [g]گ 06AF

9 [x]خ 062E 29 [l]ل 0644

10 [d] د 062F 30 [m]م 0645

11 [d]ڈ 0688 31 [n]ن 0646

12 [z] ز 0632 32 [n]ڻ 06BB

13 [r]ر 0631 33 33]ں 06BA

14 [t] ڑ 0691 34 [v]و 0648

15 [z]ذ 0630 35 [h]ہ 06C1

16 [3] ژ 0698 36 [h]ھ 06BE

17 [s]س 0633 37 [j]ی 06CC

18 [ƒ] ش 0634 38 [j]ے 06D2

19 [s]ص 0635 39
[l]

0644

20 [z]ض 0636

Table 2. Non-Aspirated consonants

Kawarbir Singh Dhanju, Gurpreet Singh Lehal, Tejinder Singh Saini and Arshdeep Kaur

Indian Journal of Science and Technology 3Vol 8 (27) | October 2015 | www.indjst.org

Pakistan uses Shahmukhi text to write Punjabi. Some of
the Major properties of Shahmukhi text:

•	 Shahmukhi text is written in Nastaleeq style and from
right to left, a highly complex writing system that is
cursive and context-sensitive. It has 49 common and
6 rare consonants, 16 diacritical marks or vowels, etc.

•	 Consonants can be further subdivided into two
groups: aspirated and non-aspirated consonants.

In Shahmukhi, aspirated consonants are represented by
the combination of a consonant (to be aspirated) and
HEH-DO CHASHMEE.
The remaining six aspirated consonants are:

[rh]ھر,[mh] ھم,[lh]ھل,[th]ھڑ,[vh]ھو,[nh]ھن.

In case of non-aspirated consonants, Shahmukhi has
more consonants than Gurmukhi, which follows the
one symbol for one sound principle. On the other hand
there are more than one characters for a single sound in
Shahmukhi.

Unicode Vowel Name
0627 Alif [ə] ا
0622 Alif Madda [a] آ
0648 Vav [o] و
06CC [i]ی Ye Chhote
06D2 Ye Bari [e] ے

Table 3. Long vowels

Unicode Vowel Name
064E َ[ə] Zabar

064F ُ [u] Pesh
0650 ِ[i] Zer

Table 4. Short vowels

Unicode Optional Diacritics Name

0656 ٖ (khari zabar)
0652 ْ (Sukun)
064E َ (zabar)
0670 ٰ (Superscript Alef)
0650 ِ (zer)
064C ٌ (dammatan)
064D ٍ (do zer)
0651 ّ (tasdid)
064F ُ (pesh)
0657 ٗ (ulta pesh)

0658 ٘ (Superscript Noon
Ghunna)

Table 5. Optional diacritics

Punctuations Unicode Punctuations Unicode

۔ 06D4 ، 060C
! 0021 : 003A
؟ 061F ٪ 066A
] 005D [005B
؛ 061B ، 066C
؍ 060D ـ 0640
٭ 066D

Table 6. Shahmukhi punctuations

Numerals Urdu Numerals Unicode

0 ۰ 06F0

1 ۱ 06F1

2 ۲ 06F2
3 ۳ 06F3
4 ۴ 06F4
5 ۵ 06F5
6 ۶ 06F6
7 ۷ 06F7
8 ۸ 06F8
9 ۹ 06F9

Table 7. Numerals in Shahmukhi text

Unicode Shahmukhi Unicode Shahmukhi
062E [x] خ 067E [p] پ
062D [h] ح 0646 [n] ن
0686 [tf] چ 0641 [f] ف
062C [d3] ج 0628 [b] ب
0645 06BB [m] م [n] ڻ
06A9 063A [k] ک [r] غ
062B 0642 [s] ث [q] ق
0679 [t] ٹ 0644 [l] ل
062A [t] ت 0639 [?]ع
0638 [z] ظ 0637 [t] ط
0636 [z] ض 06AF [g] گ
0649 [i] ى 0635 [s] ص
0634 [s] ش 0633 [s] س
0647 [h] ه

Table 8. Joiners in Shahmukhi Script

Design and Implementation of Shahmukhi Spell Checker

Indian Journal of Science and Technology4 Vol 8 (27) | October 2015 | www.indjst.org

Diacritics are used to specify the vowels. In Shahmukhi,
there are five long vowels.

And three short vowels:
According to Analysis, below diacritics are considered to
be optional:

2.2 Shahmukhi Punctuation

2.3 Shahmukhi Numerals
Shahmukhi characters can be divided into two groups,
non-joiners and joiners1. The non-joiners can acquire
only isolated and final shape and do not join with the next
character On the contrary; joiners can acquire all the four
shapes and get merged with the next following charac-
ter. A group of joiners and/or non-joiner joined together
form a ligature. A word in Urdu is a collection of one or
more ligatures. The isolated form of joiners and non-join-
ers is shown in Tables 8 and 9.

3. Error Pattern in Shahmukhi
Text
Shahmukhi text has complex grammatical rules and pho-
netic properties which makes Shahmukhi text open to
different types of mistakes. The following error patterns
were observed in Shahmukhi text:

3.1 Multiple Characters with Same Sound
(Phonetic Nature)
In Shahmukhi script, there is more than one letter for
single sound; some sounds have 5 to 6 letters, which is the
major reason for spelling mistakes. Some of the examples
are shown below.

One of the most common type of error in Shahmukhi
text is that “gol he(ہ)” is used at the end of word to pro-
duces sound of “a”, but mostly the user misspelled it with
 .(alef) ا
For Example,

/ɘmrikɘ/اکیرما<=/ɘmrikh/ ہکیرما

Characters with Similar Shapes: - In Shahmukhi script,
the characters such as given below, have same shapes and
thus are reason for the misspelled words.

3.2 Characters with Zero Width
In Shahmukhi script, the characters such as given below
in the Table 12, have zero width and so if by mistake a
user makes multiple entries of such characters only a sin-
gle entry is visible. If the spell checker flags such word as
misspelled the user will not come to know where the error
exist. This problem is also considered as Visual Error as
well as Dual Diacritic Error. For example, consider the
word,

ُُا اُ+ُ+ ل +ف + َ +ت= /ulfat/تفَل

Unicode Shahmukhi Unicode Shahmukhi
0698 [3] ژ 062F [d] د
0632 [z] ز 0622 [a] آ
0691 [r] ڑ 0627 [ə] ا
0631 [r] ر 06D2 [e] ے
0630 [z] ذ 0648 [v] و
0688 [d] ڈ

Table 9. Non-Joiners in Shahmukhi Script

H ہ ح
K ک ق
J ض ز ظ ج ژ ذ
T ط ت ت ھٹ ٹ ة

S س ص ث

Table 10. Characters having similar phonetic Code

ث ٹ ت پ ب
خ ح چ ج
ز ڑ ژ ر ذ ڈ د

س ش
ض ص

ظ ط
غ ع
ق ف
گ ک
ں ن

Table 11. Characters having similar Shape

Kawarbir Singh Dhanju, Gurpreet Singh Lehal, Tejinder Singh Saini and Arshdeep Kaur

Indian Journal of Science and Technology 5Vol 8 (27) | October 2015 | www.indjst.org

It has two “pesh” diacritic mark but visually the word
looks correct but internally it has stored wrongly and the
user will not be aware where the error lies.

3.3 Visual Errors due to Nastaleeq Style
As Shahmukhi is written in Nastaleeq Style, so sometime,
when number of joiners (letter type- Joiner and Non-
Joiner) gets combined to form the word, the diacritic
marks is not visible to the users which might be having
some mistake. Such problems are considered as Visual
Error. As in the Example
/rukkhe/ ےھکّرُ = ر + ُ + ک + ّ + ھ + ے
This word has 3 Joiners (ے,ھ, ک), so tasdid (ّ) is not visible
when the letters are joined.
/rukhe/ےھکرُ = ر + ُ + ک + ھ + ے
In this word tasdid (ّ) is missing which is considered as a
mistake when diacritic marks are compulsory.

3.4 Presence of Nasal Sounds
There are five nasal sounds in Shahmukhi, Rnoon (ڻ),
Meem (م), Noon Gunna (ں), Gunna (ن) and Do Zabar (ً).
The user often gets confused about which character is to
place among the above characters for the nasal sound. For
Example:
/sanbhandhi/یھدنبمس

/sanbhandhi/یھدنبنس

3.5 Optional Diacritics
The problem which is typically related to Shahmukhi
Script is that Short Vowels and diacritic marks are not
compulsory to write. So if the word having two optional
diacritics, the user may lose first diacritic, second diacritic
or both or even both the diacritic marks may be consid-
ered. Thus, a single word with two diacritics have its four

variations. All the cases have to be considered for spell
checking.

For example, /ulfat/ُا word can be written asتفَل
ُا or تفلا or تفَلا all these variations are correct ,تفل
and has to be considered.

3.6 Presence of Izafat
Izafat are words in which two valid words are connected
like: رابتعا لِباق (kabil-i-aitbar) and its meaning is
words are connected like: diacritics, the user may lose
first diacritic, second diacritic or both or even both the
diacritic marks may be considered any two words can be
connected to form Izafat. Some of the examples of Izafat
are:

,/kabil-i-aitbar/رابتعا لِباق

,/baag-o-bahaar/راحب و گاب

,/Mughal-i-azam/مظعا لِغم

/ah-i-garm/مرگ ہِآ

4. Lexicon Creation
The first step in development of the spell checker is the
creation of a lexicon of correctly spelled words, which will
be used by the spell checker to check the spellings as well
as generate the suggestions. Various Techniques has been
used to create the Lexicon for different Spell Checker such
as some of them are given below:

•	 In Bangla Spell Checker4, phonetically similar charac-
ters are mapped into the single unit of character code.
So the user input is checked using that character code.

•	 In Malayalam Spell Checker5, “Rule cum Dictionary”
based Approach is used, where it stores the root word
in dictionary and user input is checked by deriving
the root word using the Morphological Analyzer and
Morphological Generator.

•	 In Oriya Spell Checker6, the words in the dictionary
are stored according to the length of the word for
effective search. Only root words are stored in the dic-
tionary, so root word is obtained from the user input
by using Morphological Analyzer and this root word
is then checked from the dictionary.

Unicode Optional
Diacritics

Name

0656 ٖ (khari zabar)
064E َ (zabar)
0670 ٰ (Superscript Alef)
0650 ِ (zer)
0651 ّ (tasdid)
064F ُ (pesh)

Table 12. Characters having zero width

Design and Implementation of Shahmukhi Spell Checker

Indian Journal of Science and Technology6 Vol 8 (27) | October 2015 | www.indjst.org

•	 In Assamese spell checker7, Hash Table has been
used as lexicon look-up data structure. The correct
Assamese words are stored into the hash table. The
user input is directly checked by dictionary search
technique.

From the above observation, there are two issues involved
in lexicon development:

•	 Size of the lexicon.
•	 Format of the words in lexicon.

4.1 Size of the Lexicon
It is observed that there are two approaches can be fol-
lowed for storing the lexicon8. The first approach stores
the root words of a language and the rest of the words are
derived from these root words like Oriya spell checker.
The other approach is to store all the possible words of
the language in the lexicon. We have followed the second
approach and stored all the possible forms of words of
Shahmukhi words in the lexicon.

In Shahmukhi Script, as Optional Diacritics discussed
in Error Pattern, a single word with two diacritics have
its four variations and all the cases have to be considered
for spell checking. For the consideration of all the cases,
words having all the diacritic marks is stored in the lexi-
con.

For example, ُا -ulfat/ having two optional dia/تفَل
critic have four variations (ُا تفَلا تفلا تفل
ُا ُا but in lexicon ,(تفَل word (word having both تفَل
diacritic marks) is stored so that spell check and sugges-
tion generation of wrong word is possible while Spell
Checker is executing in e considered for as well as having
both diacritic marks) is stored so that spell check and sug-
gestion generation of wrong word is possible while Spell
Checker is executing in “With diacritic” spell checking.
For the conside identified and stored in the database.

In Lexicon, each word is given a Phonetic code
according to Soundex Approach. Phonetic code itself acts
as index key to all the words having same phonetic code.

Furthermore, the words are arranged according to
the size of phonetic index. During program execution the
words are loaded into Hash table and nineteen different
Hash tables are used for different Phonetic code length.
The key of the Hash Table is the Phonetic code and value
of the Hash Table is the list of all possible words corre-
spond to that Phonetic code.

Table 13. Some entries in Hash table of length 3
Phonetic Shahmukhi words
HUA َہ /hua/آؤُ

/hawa/اوہ
/haawa/اوّحَ

The advantage of this approach is Phonetic code,
Word length base dictionary division and Hash Table of
above discussed Spell Checkers are included to make it
more powerful. The number of keys in each of these hash
tables is shown in Figure 1.

4.2 Format of the Words
In Unicode, there are more than one code points for a
single letter. For example, آ (alef-madda) letter can be
written by a single key (that means single Unicode 0622)
and ا + ٓ, two keys (that means two Unicode combined
0627 + 0653, correspond to a single letter). It was neces-
sary to normalize the text in lexicon for storing so that the
order of letters in the word stored in lexicon and that of
user entered for spell checking is always same. Therefore
the Normalization Form C (NFC) is used for storing the
lexicon.

For an example, as discussed above is a word مارآ
(Aaram)

مارآ=آ + ر + ا + م
Now if the user write that word by using different keys,
like,

مارآ = ا + ٓ +ر + ا + م
Then it is normalized to the above form so that it can be
compared with the Lexicon.

5. Spell Checker Architecture
As proposed by many other researchers4–8. The major
components of the spell checker architecture are shown in
Figure 2. The basic modules are: Pre-processing Module
(which consists of Tokenization, Normalization, Remove
Optional Diacritics and Code Generation), Lexicon
Look-Up/Error Detection Module and Error Correction/
Suggestion Generation Module.

5.1 Pre-Processing Module
This module pre-process the user text, so that it can be
formalized into the predefined format of the lexicon. This
module performs the following steps:

Kawarbir Singh Dhanju, Gurpreet Singh Lehal, Tejinder Singh Saini and Arshdeep Kaur

Indian Journal of Science and Technology 7Vol 8 (27) | October 2015 | www.indjst.org

5.1.1 Tokenization
Tokenization is the process to break the block of text
into a list of words. The text is broken with the help of
some boundary delimiter and blank spaces. The bound-
ary delimiters here are several punctuation marks. As
Unicode is standardized for Shahmukhi script, so all
boundary delimiter like punctuation marks, blank space
etc. is considered for tokenization.

5.1.2 Word Normalization
The tokens are then made to pass through a normaliza-
tion process to convert them to the format in which the
lexicon has been stored. We have used CNF for this pur-
pose. The purpose of normalization can be shown from
the following example:
َہ ,/hua/آؤُ
This word can be written in multiple forms such as:
 ا ُ ٔ و َ ہorٓ ا ُ ؤ َ ہ
ٓ, but in Lexicon, it is stored as آ ُ ؤ َ ہ, Thus,
the word َہ } typed in any format will be normalized as آؤُ
.{ ہ ,َ ,ؤ ,ُ ,آ

5.1.3 Remove Diacritics
The normalized tokens are then passed through Remove
Diacritics phase, in which the optional diacritics (as
shown in Table 5) are removed from the normalized
token. The purpose of this phase is to achieve a word of
constant length which can be searched in a single diction-
ary of constant length. For an example,
َہ→ آؤہ (after removing diacritics) آؤُ

As this word is of constant length ‘three’, so it needs com-
parison with a dictionary of words having length ‘three’
only.Similarly,
ُا (after removing diacritics) تفلا→تفَل
Here تفلا has ‘four’ characters so it will be compared
with the dictionary of length ‘four’.
diacritics. If match occurs then control passes to next
token.

But if mismatch occurs due to other reasons like use
of wrong diacritic or diacritic is placed at the wrong posi-
tion, then it will considered as a miss and Error correction
Module will start.

As an example, considering a wrong word آؤَُہ from
previous example, here “ َ”(zabar) is placed at wrong posi-
tion (after “pesh” instead of after “gol he”). So, when we
compare wrong word آؤَُہ with right word َہ from Table) آؤُ
15), here mismatch occurs and then this word is passed to
the Error Correction Module. Using this approach we can
easily handle Visual Error, Dual diacritic error and dia-
critic displacement Error.

Similarly, consider a word آؤُہ, here “َ” (zabar) is miss-
ing from the word in lexicon, so when we compare both
words, it will not be considered as an error as the differ-
ence lies in optional diacritics and control passes to the
next token.

5.2.2 Search with Diacritics
In case of Search with Diacritics, if the token does not
matches with any word in the list correspond to the pho-
netic code, then Error correction phase starts.

0

4500

9000

13500

18000

22500

1 2 3 4 5 6 7 8 9 10 11 12 13 14
H

as
h

T
ab

le
 E

nt
er

ie
s

Word Length
Figure 1. Dhanju: Keys in Hash Table of

Different Word Length.
Figure 1. Dhanju: Keys in Hash Table of Different Word Length.

Design and Implementation of Shahmukhi Spell Checker

Indian Journal of Science and Technology8 Vol 8 (27) | October 2015 | www.indjst.org

As an example, consider a word آؤُہ, here “ َ” (zabar) is
not optional from the word in lexicon, so when we com-
pare both words, it will be considered as an error as the
difference lies in diacritics and in this phase, all the dia-
critics are compulsory. So wrong word passes to the Error
Correction Module.

5.2.3 Advantages of using Phonetic Dictionary
in Error Detection Module
Once the system has detected an erroneous word, all the
words in the list we found earlier using the phonetic code,

will be considered as a suggestion for the current user
token as this list contain all the words that have either
diacritics or phonetic differences. So at this stage while
detecting error we are provided with the suggestions of
most commonly occurring errors (i.e. diacritic errors and
phonetic errors), which, are later feed to Ranking phase of
Error Correction Module.

\For an example, In case of wrong word آؤَُہ , the
Table 15 is directly passed to the Ranking Phase of Error
Correction Module as all the words in Table 15 have
either diacritic or phonetic differences.

Yes

No

Shahmukhi
Dictionary with Frequency

List

Pre-processor
Tokenization Word

Normalization

Remove
Diacritics

Code
Generation

Input Shahmukhi Words

Error
Detection

Error

Error Correction

Display
Suggestion Bigram List

Ranking of
Suggestions Literature Survey

Frequency Analysis

Errors Position Analysis

Suggestion List Generation
Reverse Minimum Edit Distance

Approach

N-gram Approach

Kawarbir Singh Dhanju, Gurpreet Singh Lehal, Tejinder Singh Saini and Arshdeep Kaur

Indian Journal of Science and Technology 9Vol 8 (27) | October 2015 | www.indjst.org

5.3 Error Correction Module
Once the Error Detection Module has detected an erro-
neous word, the erroneous word along with the previous
and next word are passed to the Error correction module.
Error correction Module performs the following steps:

•	 Suggestion Generation.
•	 Ranking of Suggestions.
•	 Suggestion Generation Phase.

We have used following approach for Suggestion
Generation.
Advanced Reverse Minimum Edit Distance Approach
using bi-gram to find suggestions for the wrong word.

5.3.1.1 Reverse Minimum Edit Distance Approach
We have used the reverse minimum edit distance approach
to generate the primary suggestion list8. We generate sug-
gestions from the wrong word by supposing Errors like

•	 Insertion Error: When at least one extra character is
inserted in the desired word. For example,
ُا ُا →تتس ustat t least) تستس

•	 Deletion Error: When at least one character is deleted
in the desired word. For example,

ُا ُا→تتس ustat least) تت
•	 Substitution Error: This error occurs when at least one

character is substituted by the other character. For
example,

ُا ُا→تتس ustat rror oc) رتس
•	 Phonetic Error: Shahmukhi has certain characters

which phonetically sounds similar and thus are reason
for the misspelled words. For example,

ُا ُا→تتس ustat khi has) تتث
•	 Transposition Error: When two adjacent characters

are transposed. For example,
ُا ُا→تتس ustat o adjac) تست
•	 Diacritic Error: In case of Search with Diacritics, at

least one extra Diacritic is inserted or deleted in the
desired word, which is considered as diacritic Error.
For example,

ُا -here ُ is the missing dia (uf → af as a+u=u)فا →ف
critic. These errors also give rise to real word errors.
For example,ِا→سا ُا→ساas the mis) س as the m) س

•	 Run-On Error: When there is space missing between
two or more valid words. For example,

ُا ُا→ینرک تتس .(ustat karni ords) ینرکتتس

•	 Split Word Error: This is opposite of Run-on error
when there is some extra space is inserted between
parts of a word. The error can be removed by removing
the extra space. For example, ُا ُاتت→تتس ustat)س
-> us tat)

5.3.1.2 Advantages of using Phonetic Dictionary in
Suggestion Generation Phase
We generate suggestions by inserting combination of
errors ourselves in the wrong Token’s Phonetic Code.
Here every combination is tried but Our Combination
span reduces to its 1/3rd almost because of:

•	 Phonetic Code: As each Symbol generally stands for
three characters or more (Explained in Table 11). So
by substituting single phonetic symbol we are check-
ing for all phonetic characters corresponding to that
symbol in a single match.

For e.g. consider a word”رب”ربکا e.g. conside code
AKBR. If we insert phonetic symbol S in AKBR i.e.
ASKBR then searching for ASKBR in hash table will be
equal to searching of all form of (A= 5 characters, S=5
characters, K=4 characters, B=2 characters, R=3 charac-
ters) in a single comparison.

5.3.1.3 Advanced Reverse Minimum Edit Distance
Approach using Bi-gram
We have reduced the comparisons of Reverse Minimum
Edit Distance Approach by using Bi-gram. We had
already found the possibility of occurrence of character
after another character in each dictionary (dictionary is
divided on length bases). By this we can find out the pos-
sible positions where error could have existed. Therefore
it minimizes the positions where the symbols can be
inserted, substituted, deleted or Trans-positioned.

If there is no possibility of occurrence of one character
after the other character in user Token, then that combina-
tion is tried for reverse minimum Edit Distance Approach
and the loop for all other combinations will not be tried
whereas if all the bi-grams of user token exist, then every
combination of Reverse Edit Distance Approach is tried.

For e.g. consider a word ”ررکا” having Phonetic code
AKRR. The bi-gram for AKRR are: AK, KR, and RR. If
we know that bi-gram ‘RR’ does not exist in dictionary of
length 4. So either of the R can be substituted. No other
symbol (i.e. A, K) can be substituted, as substituting either
A or K will lead to existence of ‘RR’ in Phonetic Code and

Design and Implementation of Shahmukhi Spell Checker

Indian Journal of Science and Technology10 Vol 8 (27) | October 2015 | www.indjst.org

hence there will be no match of Phonetic Code in the dic-
tionary. Therefore it leads to only 2 possible positions for
substitution error (i.e. either of ‘R’).

Similarly if ‘RR’ does not exist in dictionary of length
4+1, then a symbol can only be inserted between ‘RR’. So
we do not need to try any other combination for deletion
error.

We have observed that bi-gram is most successful
with words of length 7 to 19.

First Character changes should be excluded as
we have observed that the occurrence of error in first

character is very rare. So it eliminates the change of
first character in application of Reverse Minimum Edit
Distance Approach.
Example of Suggestion Generation

For wrongly spelt word,
لگن

The Suggestion list generated is:

 رگن , یگن, مگن,نگن , لگنِ

Code Characters with similar sounds
N ًا ن ں
A ءا أ ع آ ا
K ک ھک خ ق
G غ ھگ گ
C چ ھچ
J ض ھج ظ ژ ذ ز ج
T ط ھت ت ھٹ ٹ ة
D ھڈ ڈ ھد د
P ف ھپ پ
B ب ھب
M م
R ڑ ھڑ ر
L ل
S ش ص ث س
U ٶ و ؤ وُ ؤ
H ہ ح ۂ ھ
E ے ءے ےَ ۓ

Table 15. List of words correspond to a single Phonetic code

Phonetic Shahmukhi

HUA َہ /hua/آؤُ
/hawa/اوہ
/haawa/اوّحَ

Table 15. List of words correspond to a single Phonetic code

Kawarbir Singh Dhanju, Gurpreet Singh Lehal, Tejinder Singh Saini and Arshdeep Kaur

Indian Journal of Science and Technology 11Vol 8 (27) | October 2015 | www.indjst.org

الگن , نلگن , ہگنِ, رّگنِ,ےلگن,یلگن,

5.3.2 Ranking of Suggestions
Once the suggestion list has been generated, each sug-
gestion is given weight according to the results of error
analysis for Shahmukhi script carried out in detection of
error patterns. According to the analysis following type of
weights are assigned to the suggestions.

•	 Weightage to each Error according to Literature
Survey.

•	 Weightage according to Frequency.
•	 Weightage according to the location of Errors.

Weightage to Each Error according to Literature Survey11:
During Literature Survey, we have found the following
hierarchy of errors which is from high occurring errors to
low occurring errors.
•	 Diacritic Error is the most common error which occur

due to non-consideration of diacritics in Shahmukhi.
•	 Phonetic Error mostly occurs after Diacritic Error

because of the complexity of this language:
o High and Low Tones of same sound.
o Multiple Characters for same sound.

•	 Run-On Error and Split Error are the most common
errors that occur due to presence of Non-joiners and
typing Errors.

•	 Substitution Error is the next most common Error that
occur due to substitution of wrong character.

Type of Error Percentage of
Occurrence

Single Error 83.23%
Double Error 6.45%
Multiple Error 2.40%
Name Entities 5.06%
Foreign words (like English or Hindi words spelled in
Punjabi)

2.86%

Type of Error Percentage of Occurrence

Single Error 71.75%
Double Error 11.34%
Multiple Error 13.03%
Name Entities 2.48%
Foreign words (like English or Hindi words spelled in
Punjabi)

1.40%

Type of Errors Percentage of Occurrence
(With Diacritics)

Percentage of Occurrence
(Without Diacritics)

Insertion Error 13.83% 28.96%
Substitution Error 19.76% 41.38%
Deletion Error 3.06% 6.40%
Transposition Error 0.19% 0.39%
‘Diacritic’ 54.39% 4.46%
Run-On Error 1.38% 2.91%
Split Word Error 0.32% 0.68%
Phonetic Nature of Character e.g.(ṱ,ṱṱ) 7.07% 14.82%

Table16. Percentage of occurrence of Error in Optional Diacritic case

Table 17. Percentage of occurrence of Error in Compulsory Diacritic case

Table 18. Percentage of occurrence of Error in Optional as well as Compulsory Diacritic
case

Design and Implementation of Shahmukhi Spell Checker

Indian Journal of Science and Technology12 Vol 8 (27) | October 2015 | www.indjst.org

•	 Insertion Error and Deletion Error has less probability
of occurrence than above discussed errors.

•	 Transposition Error has lowest weightage according to
survey but it is quite helpful in some special cases.

Weightage according to Frequency:
•	 The Results are also refined according to the frequency

of their occurrence. It helps in rearranging the sugges-
tions where a single type of error has occurred.

Weightage according to the location of Errors:
•	 Errors that occur at the end of the word (Token) has

more weightage as compare to the error that are at
beginning of the word (Token).

Example for Ranking of Suggestions:
After sorting, the list from suggestion Generation Phase,
We obtain the reordered list:

 ,نگن ,ےلگن ,یلگن,الگن ,نلگن ,لگنِ
ہگنِ ,رّگنِ ,رگن ,یگن,مگن

6. Evaluation and Results

6.1 Test Words Preparation
We used most commonly mis-spelled words to analyze
the performance of the spell checker. The words were
drawn from several sources:

•	 Online Shahmukhi Newspapers.
•	 Online Shahmukhi stories.
•	 Shahmukhi Research Reports.

6.2 Test Results
•	 Error Analysis if Diacritics is not compulsory.
•	 Error Analysis if Diacritics is Compulsory
•	 General Error Analysis.

7. Conclusion
This is the first time that a spell checker for Shahmukhi
Script has been designed and implemented. The spell
checker is part of the Shahmukhi word processor. We
have only taken care of non-real word errors. Detection

and correction of real word errors and Izafat is a subject
of further research.

8. References
 1. Saini TS. Scripts of Punjabi Language: Comparative Study.

Research in Shahmukhi to Gurmukhi Transliteration
System: A Corpus based Approach; 2011. p. 65–93.

 2. Malik MGA.Transliteration STransliteration. Proceedings
of the 21st International Conference on Computational
Linguistics and 44th Annual Meeting of the ACL. , Sydney;
2006 Jul. p. 1137–44.

 3. A Study on Collation of Language from Developing Asia.
109–20. Available from: http://www.panl10n.net/english/
outputs/Collation%20Book/Collation%20Book/Final%20
Versions/pdfs/Urdu.pdf

 4. Chaudhuri BB. Reversed word dictionary and phonetically
similar word grouping based spell-checker to Bangla text.
Proc LESAL Workshop: Mumbai; 2001.

 5. Varghese ST, Kumar RR, Sulochana KG. Malayalam Spell
Checker. Resource Centre forIndian Language Technology
Solutions, TDIL Newsletter.

 6. Mohanty S. Analysis and Design of Oriya Morphological
Analyzer: Some Tests with OriNet. TDIL Newsletter.

 7. Das D, Borgohain S, Gogoi J, Nair SB. Design and
Implementation of a Spell Checker for Assamese. LEC,
Language Engineering Conference (LEC’02); 2002 Dec
13-15. p. 156–62.

 8. Singh S, Gohain L, Gogoi J, Nair SB. Design and
Implementation of a journal of systemic cybernetics and
informatics; 2007. p. 70–5.

 9. M. G. Abbas Malik, ,gohain, JuliGogoi, S.B. Nair (2002),
Design and Implementation of ajournal of systemic cyber-
netics and informatics, 2007, pp.70-75

10. Javaid S,Sattar H, Ali A, Malik MGA.Survey of
Computational Support for Shahmukhi script of Punjabi
language. Academic Research International. 2011 Jul;
1(1):292–300.

11. Iqbal S, Anwar W, Bajwa UI, Rehman Z. Survey of
Compeverse Edit Distance Approach. The 4th Workshop on
South and Southeast Asian NLP (WSSANLP). International
Joint Conference on Natural Language Processing. Nagoya,
Japan. 2011 Oct 14-18. p. 58–65.

12. Growth of Scheduled Languages-1971, 1981, 1991 and 2001.
Census of India. Ministry of Home Affairs, Government of
India. 2015 Feb 22.

